
Backlund transformations for the isospectral and non-isospectral MKdV hierarchies

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 2867

(http://iopscience.iop.org/0305-4470/23/13/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math.  Gen .  23 (19901 2867-3877 Prlnted in the U K  

Backlund transformations for the isospectral and 
non-isospectral MKdV hierarchies 

Tian Chou and Zhang Youjin 
Department of Mathematics,  Universit? of Science and  Technology of China,  Hefei, Anhui.  
People's Republic of China 

Received IS September 19h9 

Abstract. By transforming the usual Lax pairs of the isospectral and  non-isospectral M K d v  

hierarchies into Lax pairs i n  Riccati form, a unified explicit form of Backlund transforma- 
tions and  superposit ion formulae for these hierarchies of equations can be obtained. 

1. Introduction 

As a powerful means in the construction of solutions for non-linear evolution equations, 
the Bscklund transformation has become a very important subject in the study of 
nonlinear evolution equations [l-61. During the past few years, it has been noticed 
that by using the Darboux matrix method, a unified explicit form of Biicklund transfor- 
mations can be obtained for some hierarchies of isospectral equations, such as isospec- 
tral K ~ V ,  M K d v ,  sine-Gordon and the ~ K N S  hierarchy [7-111. The approach to the study 
consists of constructing the Darboux matrix first, and then proving the gauge 
equivalence of the related Lax pairs. However, demonstrating the t part is quite difficult 
in this approach, and it is also hard to employ this method to study hierarchies of 
non-isospectral evolution equations. 

In the present paper, we firstly convert the usual Lax pairs for the isospectral and  
non-isospectral MKdv hierarchies into Lax pairs in Riccati form, then by using an  
obvious invariability for the t part of the new Lax pair, we obtain concisely a unified 
explicit form of Backlund transformations for the isospectral and  non-isospectral M K d v  

hierarchies, and we also obtain a superposition law for these hierarchies of equations. 
The advantage of our approach is that it not only enables us to get Backlund transforma- 
tions for the isospectral and non-isospectral hierarchies in a unified way, but also 
makes the procedure much simpler and clearer than in the previous method. Further- 
more, our approach can also be employed to study other hierarchies of equations, 
such as the isospectral and  non-isospectral K d v  and A K N S  hierarchies [12]. 

For clarity, we first consider the isospectral h4Kdv hierarchy in section 2 ,  and then 
consider the non-isospectral case in section 3. 

2. Backlund transformations for the isospectral n K d v  hierarchy 

In this paper we always assume that y(x, t )  is a smooth function of x and t ,  and q 
and its derivatives to any other with respect to x tend to zero rapidly when x + -m. 
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Consider the isospectral M K d v  hierarchy 

41 = K ,  = q n q ,  n = 0 , 1 , 2 ,  . . .  
where 

q = q ( q ) = D ' + 4 q ' + 4 q , D - ' q =  D(D+4qD- 'q)  

and 

D- '=  dx'  qo = I. 
d D = -  

dx  J:x 
Equation ( 2 . 1 )  has the following Lax pair [ 1 3 ] :  

V, = M V  V, = N,V 

where 

(2.1) 

7 is the spectral parameter with 77, = 0 (due to this we call the hierarchy of equations 
(2.1) the isospectral hierarchy, and the case v1  f 0 corresponds to non-isospectral 
hierarchy), and A,, B,, Cn are defined by 

n-1 

B, - C, = 2(4772)1(D+4qD-'q)'Pn-/-1Dq+2(4~2)nq 
/ = 0  

n 

= 2 2(477*)'[(D+4qD-'q)D]"'q n = 0 , 1 , 2 ,  . . .  
/=0 

(2.4) 

A, = D - ' q ( B n + C , ) + ( 4 ~ 2 ) n ~  n = o ,  1 , 2 , .  . . . (2.5) 
Let T = v 2 /  U ' ,  then from ( 2 . 2 )  we have 

r,= - q ( i + r 2 ) - 2 7 7 r  ( 2 . 6 ~ )  
r, = C, - 2 A , T -  B,r '=f(C, - Bn)( l  +I+)+;( C, + B,)(1 -T2)-2A,T. ( 2 . 6 b )  
Define Q =tan- '  r, then ( 2 . 6 )  can be written as 

cpX = -9 - 77 sin 2 9  

Q, =;(C,, - B,) +;(Cn + B,) cos 2 q  -A,, sin 2 9 .  
( 2 . 7 ~ )  
( 2 . 7 6 )  

From the boundary conditions of q we can assume that q and its derivatives to 
any order with respect to x tend to zero rapidly when x + --CO. (If Q tends to infinity 
we can assume r = v l /  u2. )  Now we define 

+(Q, T ) =  D2+4qt:-49,D-'qxx+4772sin22q+877'9,D-1sin2~ cos2cp 

T ( Q ,  77) = D+277 cos 2 ~ .  
It is easy to prove that 

w q ) u Q ,  77) = UQ, 77)+(Q, 77). 
By using the above formula we have the following lemma. 

Lemma 2.1. If q(x, t )  and Q are related by ( 2 . 7 a ) ,  then 
f ( C ,  - B, )  + f (  C, + B,) cos 2 9  - A, sin 2~ = $(Q, 7 7 ) " ~ ~ .  
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Proot From (2.3)-(2.5) we have 

&( C, - B , )  + f (  C, + B , )  cos 2 p  - A n  sin 2p 

n - l  

= (4772)'(D+4qD-1q)9n-'-1T9~+(4772)"(p.~+ 7 sin 2 9 )  
/ = 0  

= 22'-'7721-2(D+4qD-1q -277 cos 2p+477 sin 2cpD-lq) 
f = l  

Lemma 2.2. If p satisfies (2.7b), then q defined by ( 2 . 7 ~ )  satisfies the nth-order M K d v  
equation (2.1). 

ProoJ: From (2.7), (2.8) and lemma 2.1 we have 

which proves the lemma. 
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Now we are prepared to construct a Backlund transformation for equation (2.1). 

Theorem 2.1. Let q(.q t )  be a solution of equation (2.1), and V satisfy equation (2.2), 
and  vo be any constant such that Re qo<O then 

cf = 4+2(cp(x, 1, v ~ , ) ) ,  = q+2cpll, = q + 2 ( t a n - '  ro), (2.9) 

also satisfies equation (2.1). 

ProoJ From our assumption we know that (p0, 7,)) satisfies equation (2.7b), and  cpo 
has the required boundary condition. Since $( cp, 7 i is invariant under the transforma- 
tion (cp ,  7 )  - ( - c p ,  - 7 )  we know from lemma 2.1 that ( -vo,  -v0) also satisfies equation 
(2.76). Define 9 = -(-cpll)\ - (-70) sin 2(-cpl,), then from lemma 2.2 we know that cf 

0 also satisfies equation (2.1), which proves the theorem. 

Theorem 2.2. If q(x, t )  is a solution of equation (2.1), V satisfies equation (2.21, 7(,, 7 
are any constants such that Re v,, < 0, Re 7 < 0, then (F defined by 

1 I (  7) cos q - 70 COS(2cpO - cp 1 
-7  sin cp+qosin(2cp~,-cp) 

(P = (P(t7, 71~,,  x, t )  =tan  

is a solution of equation ( 2 . 7 ~ )  and (2.76) with q replaced by 

cf = 4 + 2 9  (x, t ,  7 0 )  Y = q + 2PO\ 

i.e. 
. 

(P(7, 70,x, t ) ,  =*"(cF, 7)(P\ 4, = - 4  - 7) sin 2y. 

The proof of theorem 2.2 is given in appendix 1. From this theorem and lemma 
2.2, we know that for any constant 7, such that Re 7,  < O  the 4 defined by q = 
~ 7 + 2 4 ( 7 7 ~ ,  q0, x, t), is also a solution of equation (2.1). So theorem 2.2 makes the 
further process of the Backlund transformation (2.9) an algebraic calculation. 

3. Backlund transformations for the non-isospectral MKdv hierarchy 

Consider the non-isospectral M K d v  hierarchy 

q r = v ' ( 4 ) " ( x q , + q )  n = 0 , 1 , 2 ,  . . .  

Equation (3.1) has the following Lax pair [ 131: 

V , = M V  V, = N,V 

where 

(3.2) 

and  the spectral parameter 7 satisfies 7, = ~ ( 4 7 ' ) "  (non-isospectral), A,,, B,, C, are 
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defined by 

B, + C, = c 2"77"-'qfl-'(xq), 
n 

/ = I  

(3.3) 

B,+C,=O 
n - l  

B, - C, = C 22"'~Zi(D+4qD-'q)9n-'~'(~q)~+2(477'))"~q 
/ = o  

,I  - 1 

= - c 22" 'v2i (D+4qD-lq) (D+2q COS 2 9 ) + n - - i - ' ( ~ 9 , )  
i -0 

" - 1  

-2(4772)"~'p, - 2~"'t721(D+4qD-'q)qfl-i-'77 sin 2 9  
1-0 

-2q(472)".x sin 2 9  n =0,  1, 2 , .  . . (3.4) 

A,, = D-lq( B,, + C,) +2(477')"x 
,I 

= - 2"77~'- 'D- 'q~,- ' [(D+277 cos2cp)(xcp,)+v sin2cp]+v(4q2)"x 

- -  - ~ 2 1 - l D - 1 q ( D + 2 ~  COS 2cp)+"-'(xpX) 

I =  I 

321 

/ = I  

n = 0 , 1 , 2  , . . . .  (3.5) 
1=1 

We define cp = tan-'( u2/  U,), then as in section 2 we have 

9.; = -q - 77 sin 2 9  

cpt = ;( C, - B,,) ++( C,, + B,?)  cos 2cp - A ,  sin 2cp. 

( 3 . 6 ~ )  

(3.66) 

Lemma 3.1. If  q and p are related by (3 .6a) ,  then 

f ( C n - B , ) + f ( C , + B , , ) c o s 2 ~ - A , ,  sin2cp 
n 

71-7 - 
= (277)- -'-IJ"-'(4772p,D-' sin'2cp - 2 v 2  sin 2p cos 2p +277cp,) 

l = l  

+$"(Xp,y). 

The proof is given in appendix 2. Now define 

E(p, q ) = 4 q 2 p , D - '  sinZ2cp-2v2sin2cp cos2cp+2vpY 

then if q and cp are related by equation (3.6a),  we have 

Y ( q ) q  s i n 2 9  = T(p, q ) E ( p ,  17)+4v3 sin2cp. (3.7) 
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Theorem 3.1. If q satisfies equation ( 3 . 1 ) ,  V is a solution of equation ( 3 . 2 ) ,  qo is any 
constant independent of x and satisfies the conditions f70f  = ~~(477;)",  Re rl0 < 0, then 

q=q+2(o(x ,  4 770)r=q+2(oor ( 3 . 8 )  

satisfies the following equation 
n 

qf -Y(q)"(xq) ,  - 2(2770)21-'9(q)"-'q, =o. 
I =  1 

(3 .9)  

Proof: Denote Q = -(oo, i j  = -q0, then by using the definitions of 4 and @, lemma 3.1, 
lemma 3.2 and identity (2.8) we have 

4 = -Qs - f sin 24 

4, -wdfl(Xq)r 

= 2(2770)*'-'9(q)n-$jx 
/ = I  

thus the theorem is proved. 
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Theorem 3.2. Let q, V and 770 satisfy the assumptions of theorem 3.1, and 7 satisfy 
same conditions as v0 does. Define 

(3.10) 
-77 sin cp + T~ sin(2cpo - 9) 
77 cos cp - 770 cos(2cpo - cp) 

(o"' =tan- '  

then p") satisfies the following equations: 
- - -4 - 77 sin 29'" 

n 

(p:"=9(cpo"', ?-/)(xcp;lJ)+ (277)21-2+(cpl ' ) ,  ? p E ( g c " ' ,  77) 
/ = I  

( 3 . 1 1 ~ )  

(3.1 1 b )  

The proof of (3.11a) is same as the proof given in appendix 1. From the identity 
(2.8) and (3.110) we have 

n 

o =  q r - 9 ' ( q ) " ( x q ) , -  1 2(2770)"-'Y(q)"-'qx 
/ = I  

= -T(cp"', ? I (  c p : l ! - + ( c p ' l l ,  77)(xcpj") 

- i (277)21-2+'(cp'l), 7/)n-1E((o' l ' ,  77) - f: 2(2770)21-1+(cp(1), 77)"-/9:l i). 
/ = I  I =  I 

The derivation of the above identity is similar to that of lemma 3.2. Since E(-cp"', 7) = 
-E(cp""', T ) ,  we can prove (3.11b) by following the argument given in appendix 1. 

Theorem 3.2 makes the further process of the Backlund transformation (3.8) an 
algebraic calculation. To state more explicitly, we denote cp"'  defined by (3.10) by 
cp(')(x,  t ,  v0, 77). Let 

d 0 ) ( X ,  f ,  77) = V(X, t, 77) 

where 
t k !  

(0 (x, f, 7707 '71 9 . .  . 9 v k - 1  9 T]k) (pp = 

and qo, vl,. . . , 7 ) k  are defined as 770 given in theorem 3.1. Then by using theorem 3.2 
and following the similar argument as the one given in the proof of theorem 3.1, we 
know that q i k '  defined by 

satisfies the following equation: 

(3.12) 
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Unlike the isospectral case, for the non-isospectral case the Backlund transformation 
(3.12) is not an auto-Backlund transformation. Since the Lax pair of equation (3.13) 
can be obtained by a linear combination of the Lax pairs (2.2) and (3.2), from the 
derivation of (3.2) we know that we can also start with the equation (3.13) instead of 
the equation (3.1) to obtain a Backlund transformation similar to (3.12). For example, 
we can start with the solution i ( x ,  t )  of the following equation: 

(3.14) 

Firstly define Cp""(x, t ,  77) by using the Lax pair of equation (3.14) as we define cp at 
the beginning of this section, then from $(" we define cj'k' as we define ( p ' k ' .  Let 

- ( k - l l  
4 ' O '  = 4 4% 4(k-l '+2cpl_, ,  k = 1,2, . . . 

then 4 ( k )  satisfies the equation (3.1). 

Remark. The equation cp, = 'bcp, = cp.y,r, + 2cp3,+67*cpx sin2 2 9  is called the CDF 

(Calogero-Degasperies-Fordy) equation [ 141. In this paper we have obtained its 
hereditary symmetry 9, and the C D F  hierarchy. So we can, further, get two infinite 
sets of symmetries and their Lie algebraic structure for this hierarchy of equations. 
We can also study the symmetries and the related Lie algebraic structure for the 
hierarchy of equations given by (3.66). 
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so 

Define Q as follows: 

Then by following the derivation of (2.7) we have 

ij = - C p ,  - q sin 2Q. 

From (2.8) and the above identity we get 

However, theorem 2.1 insures that 4 satisfies equation (2.1), so 

Cp, = @ ( C p ,  ~ ) " Q , + f ( t ,  7, qO) exp (cos 24 - 1) dx ' -27x 

From the definition of Cp we can write Q ,  as 

by using the fact that '@(-cp, 7 7 )  = @(q, q )  we have 

On the other hand, we can denote @(@, v)"Cpl by 

and we have 

So we get f (  f, 77, qo) = 0. Thus the theorem is proved. 
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Appendix 2. Proof of lemma 3.1 

From (3.3)-(3.5) and  ( 3 . 6 0 )  we get 

+( Cn - B,) ++( C,  + B,) cos 2 9  - A n  sin 2 9  

= YI 22'772'( D + 4qD-Iq) T@"-'-'(xcp,) + 22"772"x9, 
' S O  

+sin 2 9  22'7721-1D-1qTn-'77 sin 2 9  - 2 2 n 7 7 2 n + 1 ~  sin 2 9  

22'-272/-2(D+4qD-'q-277 cos 29+477 sin 29D-'q) 

I =  1 

k 
= 

/ = I  

x T31n-'(x$oc,) + 22n772nx9x 
n + 2 22'-272'-2(D+4qD-'q-27 cos 29+477 sin 29D-'q)Tn-'77 sin 2 9  

/ = I  

= 3rn (xcp,) + s 
where 

n 

(D+4qD-'q -277 cos 2 9  1477 sin 29D-'q)Tn-'77 sin 29. s=  22'-2772/-2 

I =  1 

By using the identity (3.7) we have 

S =  c 22'- '~2'-2(D+4qD-'q -277 cos 2 q  +477 sin 29D-'q)W-'-I( TE +477'sin 2 9 )  
n - 1  

/ = I  

+22"-2772n-2E 

= 5' 22'-2~21-2(D+4qD- 'q  -277 cos +477 sin 2qD-'q)T@'-'-'E 
/ = I  

x ( D + 4 q D - ' q - 2 ~  cos 29+477 sin 2qD-'q)W-'-'77 sin 2 9  

= 22/-27721-2 Gfn-'E. 
/ = I  

Thus the lemma is proved. 
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